
Sören Henning and Wilhelm Hasselbring

How to Measure Scalability of

Distributed Stream Processing Engines?



Big Data Stream Processing Engines

2

“Scales to any use case”

Kafka
Streams

“It is scalable, […]”

“Elastic, highly scalable, 
fault-tolerant”“… is a unified analytics 

engine for large-scale 
data processing.”

“Battle-tested at scale, […]”



Stream Processing Scalability Benchmarking

3

• Several performance benchmarking studies for 
stream processing engines
[Karimov 2018, van Dongen 2020, Hesse 2021]

→Throughput, latency, resource efficiency, ...

• Evaluation of performance attributes for different 
cluster sizes [Akidau 2013, Kulkarni 2015]

• Need for scalability benchmarking
[van Dongen 2020,Hesse 2021]



Stream Processing Scalability Benchmarking

4

• Several performance benchmarking studies for 
stream processing engines
[Karimov 2018, van Dongen 2020, Hesse 2021]

→Throughput, latency, resource efficiency, ...

• Evaluation of performance attributes for different 
cluster sizes [Akidau 2013, Kulkarni 2015]

• Need for scalability benchmarking
[van Dongen 2020,Hesse 2021]

[Henning 2021]

Theodolite Benchmarking Tool



Distributed Stream Processing

5

Instance/Thread

map aggregatemerge filter

flatMap map

Messaging System

e.g.,

Messaging System

e.g.,



Distributed Stream Processing

6

Instance/Thread

map aggregatemerge filter

flatMap map

Messaging System

e.g.,

Messaging System

e.g.,

Instance/Thread

map aggregatemerge filter

flatMap map

…



Distributed Stream Processing

7

Instance/Thread

map aggregatemerge filter

flatMap map

Messaging System

e.g.,

Messaging System

e.g.,

Instance/Thread

map aggregatemerge filter

flatMap map

Instance/Thread

Instance/Thread

…



Scalability in Cloud Computing

8

Scalability is the ability of [a] 
system to sustain increasing 
workloads by making use of 
additional resources […].

[Herbst 2013]



Scalability in Cloud Computing

9

Load intensity is the input variable a system is 

subject to. Scalability is evaluated within a range of 
load intensities

Service levels objectives (SLOs) are 

measurable quality criteria that have to be fulfilled 
for every load intensity.

Provisioned resources can be increased to 

meet the SLOs if load intensities increase.

Scalability is the ability of [a] 
system to sustain increasing 
workloads by making use of 
additional resources […].

[Herbst 2013]

[Weber 2014]



Scalability in Stream Processing

10

Load intensity

Service levels objectives (SLOs)

Provisioned resources

∀𝑠 ∈ 𝑆: slo𝑠: 𝐿 × 𝑅 → false, true

𝑅

𝐿 ⊆ 𝐿 • Messages per second
• Message frequency
• Different message types (keys)
• …

• Instances (e.g., Kubernetes Pods)
• Threads
• VMs / configurations (S → M → L)
• …

• Lag Trend (next slide)
• …



Lag Trend Metric as SLO

11

Stream Processing 
System

Load Generator

+15000 messages/sec

slo𝑠 𝑙, 𝑟 = false

not sufficient resources



Lag Trend Metric as SLO

12

Stream Processing 
System

Load Generator

-25 messages/sec

slo𝑠 𝑙, 𝑟 = true

sufficient resources



Scalability in Stream Processing

13

Load intensity

Service levels objectives (SLOs)

Provisioned resources

∀𝑠 ∈ 𝑆: slo𝑠: 𝐿 × 𝑅 → false, true

𝑅

𝐿 ⊆ 𝐿 • Messages per second
• Message frequency
• Different message types (keys)
• …

• Instances (e.g., Kubernetes Pods)
• Threads
• VMs / configurations (S → M → L)
• …

• Lag Trend
• …



Scalability Metrics

14

∀ 𝑟 ∈ 𝑅: capacity(𝑟) = max ห𝑙 ∈ 𝐿 ∀𝑠 ∈ 𝑆: slo𝑠 𝑙, 𝑟 = true

Resource demand metric

Load capacity metric

∀ 𝑙 ∈ 𝐿 : demand(𝑙) = min ห𝑙 ∈ 𝑅 ∀𝑠 ∈ 𝑆: slo𝑠 𝑙, 𝑟 = true

based on [Henning 2021]



Scalability as a Function

15

vs.

speed-up: XX.X %

Capacity does not grow at constant rate
[Sanders 2015, Brataas 2017]



Scalability as a Function

16

vs.

speed-up: XX.X %

Capacity does not grow at constant rate
[Sanders 2015, Brataas 2017]

How to rank different systems?



Scalability as a Function

17

vs.

speed-up: XX.X %

Capacity does not grow at constant rate
[Sanders 2015, Brataas 2017]

• Visual comparison

• Clustering similar functions

• Derivative or axis intersection

• Universal Scalability Law [Gunther 2015]

→ Derive non-linear rational function

→ Contention and coherency coefficients

→ Applicable to stream processing?

How to rank different systems?



Function of Load vs. Function of Resources

18

More common in literature



Function of Load vs. Function of Resources

19

Aligned to scalability definitions:
Load is input variableMore common in literature



Function of Load vs. Function of Resources

20

Aligned to scalability definitions:
Load is input variableMore common in literature

Shows drops in capacity



Function of Load vs. Function of Resources

21

Aligned to scalability definitions:
Load is input variableMore common in literature

Allow for normalization [Gunther 2015]

→ exclude resource efficiency

Shows drops in capacity



Resources as a Function of Load

22

[Kossmann 2010]

• No binary decision on SLOs but 
instead evaluating the service level 
as a function of load

• Only feasible when auto-scaled in 
the background

➔ Contains evaluation of elasticity



Theodolite Measurement Method

23

load intensity

resources

load intensity

resources
load intensity

resources

load intensity

resources

H1

H3H2



Capacity as Discrete Values

24

resources

load intensity

Measure throughput as continuous value?



Capacity as Discrete Values

25

resources

load intensity

Measure throughput as continuous value? Alternative 1: [Karakaya 2017], [Nasiri 2019]

• Generate constant load
• Measure throughput

t

load intensity

generated load

observed throughput



Capacity as Discrete Values

26

resources

load intensity

t

load intensity

observed throughput

Measure throughput as continuous value? Alternative 1:

• Generate constant load
• Measure throughput



Alternative 1:

• Generate constant load
• Measure throughput

Capacity as Discrete Values

27

resources

load intensity

t

load intensity
generated load

observed throughput

What constant 
load?

Measure throughput as continuous value?



Capacity as Discrete Values

28

Stream Processing 
System

Load Generator Messaging 
System

Stream Processing 
System

Load Generator Messaging 
System

100 msg./sec

10 000 msg./sec

CPU: 80%

CPU: 5%

Same throughput?

Measure throughput as continuous value? Alternative 1:

• Generate constant load
• Measure throughput



Capacity as Discrete Values

29

Stream Processing 
System

Load Generator Messaging 
System

Stream Processing 
System

Load Generator Messaging 
System

100 msg./sec

10 000 msg./sec

CPU: 80%

CPU: 5%

Same throughput?

Measure throughput as continuous value? Alternative 1:

• Generate constant load
• Measure throughput

Probably not



Alternative 2: [Karimov 2017]

• Steadily increase load
• Determine when SLOs are not met 

anymore

Capacity as Discrete Values

30

resources

load intensity

t

load intensity

generated load

observed throughput

Measure throughput as continuous value?



Capacity as Discrete Values

31

t

load intensity

generated load

observed throughput

t

load intensity

Even with constant load

Measure throughput as continuous value? Alternative 2:

• Steadily increase load
• Determine when SLOs are not met 

anymore

[Henning 2021]



Capacity as Discrete Values

32

t

load intensity

generated load

observed throughput

optimized here

Measure throughput as continuous value? Alternative 2:

• Steadily increase load
• Determine when SLOs are not met 

anymore



Conclusions

33

Resource demand metric

Load capacity metric

Scalability defined based on:
• Load intensities
• Resources
• SLOs (e.g., Lag Trend)

Scalability as a Function

Remand and capacity as discrete values

Isolated experiments for different load 
and resource combinations

Application



Outlook: Theodolite Benchmarking Tool

34

Benchmark

Execution

SUT Load Generator

Load

Resource

SLO

Strategy Duration Repetitions

<<configure>>

1..*

1..*

1..*

1

1

1 1

1 1 1

1

https://github.com/

cau-se/theodolite

Operator

check SLOs

manage



35



References

36

[Akidau 2013] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, S.
Whittle. 2013. Millwheel: fault-tolerant stream process-ing at internet scale. In Proc. VLDB Endow. 6.

[Brataas 2017] G. Brataas, N. Herbst, S. Ivanšek, and J. Polutnik. 2017. Scalability Analysis of Cloud Software Services. In
Proc. International Conference on Autonomic Computing.

[Gunther 2015] N. J. Gunther, P. Puglia, and K. Tomasette. 2015. Hadoop Superlinear Scalability. Commun. ACM 58, 4
(2015).

[Henning 2021] S. Henning and W. Hasselbring. 2021. Theodolite: Scalability Benchmarking of Distributed Stream
Processing Engines in Microservice Architectures. Big Data Research 25 (2021), 100209.

[Herbst 2013] N. R. Herbst, S. Kounev, and R. Reussner. 2013. Elasticity in Cloud Computing: What It Is, and What It Is
Not. In Proc. Int. Conference on Autonomic Computing.

[Hesse 2021] G. Hesse, C. Matthies, M. Perscheid, M. Uflacker, and H. Plattner. 2021. ESPBench: The Enterprise
Stream Processing Benchmark. In Proc. ACM/SPEC International Conference on Performance
Engineering.



References

37

[Karakaya 2017] Z. Karakaya, A. Yazici, and M. Alayyoub. 2017. A Comparison of Stream Processing Frameworks. In Proc.
International Conference on Computer and Applications.

[Karimov 2018] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl. 2018. Benchmarking
Distributed Stream Data Processing Systems. In Proc. International Conference on Data Engineering.

[Kossmann 2010] D. Kossmann, T. Kraska, and S. Loesing. 2010. An Evaluation of Alternative Architectures for Transaction
Processing in the Cloud. In Proc. SIGMOD International Conference on Management of Data.

[Kulkarni 2015] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J.M. Patel, K. Ramasamy, S. Taneja.
2015. Twitter Heron: stream processing at scale. In Proc. ACM SIGMOD International Conference on
Management of Data.

[Nasiri 2019] H. Nasiri, S. Nasehi, and M. Goudarzi. 2019. Evaluation of distributed stream processing frameworks for
IoT applications in Smart Cities. Journal of Big Data 6, 52 (2019).

[Sanders 2015] R. Sanders, G. Brataas, M. Cecowski, K. Haslum, S. Ivanšek, J. Polutnik, and B. Viken. 2015. CloudStore –
Towards Scalability Benchmarking in Cloud Computing. Procedia Comput. Sci. 68 (2015).



References

38

[Van Dongen 2020] G. Van Dongen and D.E. Van den Poel. 2021. Evaluation of stream processing frameworks. IEEE Trans.
Parallel Distrib. Syst. 31 (2020).

[Weber 2014] A. Weber, N. Herbst, H. Groenda, and S. Kounev. 2014. Towards a Resource Elasticity Benchmark for
Cloud Environments. In Proc. InternationalWorkshop on Hot Topics in Cloud Service Scalability.





Theodolite’s Framework Architecture

40

Measurement
Data

Offline
Analysis

Experiment Control

Dashboard

Monitoring

Workload 
Generator

Messaging
System

Microservice (SUT)
Implementation of a Use Case

Stream Processing Engine

https://github.com/

cau-se/theodolite



Theodolite’s Benchmarks

41

Control Center

aggregatesensor data
windowBy
sliding win.

selectKey results



Example: Commit Interval

42

Hierarchical 

Aggregation

Aggregating

Time Attributes

Database 

Storage

Downsampling

Kafka
Streams



43

H
en

n
in

g 
an

d
 H

as
se

lb
ri

n
g 

2
0

2
0



Theodolite’s Scalability Measurement Method

load intensity

resources

44



Theodolite’s Scalability Measurement Method

load intensity

resources

45

sufficient resources for load?

lag increase over time?

lag = queued messages



Theodolite’s Scalability Measurement Method

load intensity

resources

46

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

47

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

48

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

49

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

50



Theodolite’s Scalability Measurement Method

load intensity

resources

51

∑



Theodolite’s Scalability Measurement Method

load intensity

resources

52

Identify minimal required 

resources per load intensity



Theodolite’s Scalability Measurement Method

load intensity

resources

53


