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How to Measure Scalability of

Distributed Stream Processing Engines?



Big Data Stream Processing Engines
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“Scales to any use case”

Kafka
Streams

“It is scalable, […]”

“Elastic, highly scalable, 
fault-tolerant”“… is a unified analytics 

engine for large-scale 
data processing.”

“Battle-tested at scale, […]”



Stream Processing Scalability Benchmarking
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• Several performance benchmarking studies for 
stream processing engines
[Karimov 2018, van Dongen 2020, Hesse 2021]

→Throughput, latency, resource efficiency, ...

• Evaluation of performance attributes for different 
cluster sizes [Akidau 2013, Kulkarni 2015]

• Need for scalability benchmarking
[van Dongen 2020,Hesse 2021]
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• Several performance benchmarking studies for 
stream processing engines
[Karimov 2018, van Dongen 2020, Hesse 2021]

→Throughput, latency, resource efficiency, ...

• Evaluation of performance attributes for different 
cluster sizes [Akidau 2013, Kulkarni 2015]

• Need for scalability benchmarking
[van Dongen 2020,Hesse 2021]

[Henning 2021]

Theodolite Benchmarking Tool
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Scalability in Cloud Computing
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Scalability is the ability of [a] 
system to sustain increasing 
workloads by making use of 
additional resources […].

[Herbst 2013]



Scalability in Cloud Computing
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Load intensity is the input variable a system is 

subject to. Scalability is evaluated within a range of 
load intensities

Service levels objectives (SLOs) are 

measurable quality criteria that have to be fulfilled 
for every load intensity.

Provisioned resources can be increased to 

meet the SLOs if load intensities increase.

Scalability is the ability of [a] 
system to sustain increasing 
workloads by making use of 
additional resources […].

[Herbst 2013]

[Weber 2014]



Scalability in Stream Processing
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Load intensity

Service levels objectives (SLOs)

Provisioned resources

∀𝑠 ∈ 𝑆: slo𝑠: 𝐿 × 𝑅 → false, true

𝑅

𝐿 ⊆ 𝐿 • Messages per second
• Message frequency
• Different message types (keys)
• …

• Instances (e.g., Kubernetes Pods)
• Threads
• VMs / configurations (S → M → L)
• …

• Lag Trend (next slide)
• …



Lag Trend Metric as SLO
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Stream Processing 
System

Load Generator

+15000 messages/sec

slo𝑠 𝑙, 𝑟 = false

not sufficient resources



Lag Trend Metric as SLO
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Stream Processing 
System

Load Generator

-25 messages/sec

slo𝑠 𝑙, 𝑟 = true

sufficient resources



Scalability in Stream Processing
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Load intensity

Service levels objectives (SLOs)

Provisioned resources

∀𝑠 ∈ 𝑆: slo𝑠: 𝐿 × 𝑅 → false, true

𝑅

𝐿 ⊆ 𝐿 • Messages per second
• Message frequency
• Different message types (keys)
• …

• Instances (e.g., Kubernetes Pods)
• Threads
• VMs / configurations (S → M → L)
• …

• Lag Trend
• …



Scalability Metrics
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∀ 𝑟 ∈ 𝑅: capacity(𝑟) = max ห𝑙 ∈ 𝐿 ∀𝑠 ∈ 𝑆: slo𝑠 𝑙, 𝑟 = true

Resource demand metric

Load capacity metric

∀ 𝑙 ∈ 𝐿 : demand(𝑙) = min ห𝑙 ∈ 𝑅 ∀𝑠 ∈ 𝑆: slo𝑠 𝑙, 𝑟 = true

based on [Henning 2021]



Scalability as a Function
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vs.

speed-up: XX.X %

Capacity does not grow at constant rate
[Sanders 2015, Brataas 2017]
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vs.

speed-up: XX.X %

Capacity does not grow at constant rate
[Sanders 2015, Brataas 2017]

How to rank different systems?



Scalability as a Function
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vs.

speed-up: XX.X %

Capacity does not grow at constant rate
[Sanders 2015, Brataas 2017]

• Visual comparison

• Clustering similar functions

• Derivative or axis intersection

• Universal Scalability Law [Gunther 2015]

→ Derive non-linear rational function

→ Contention and coherency coefficients

→ Applicable to stream processing?

How to rank different systems?



Function of Load vs. Function of Resources
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More common in literature



Function of Load vs. Function of Resources
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Aligned to scalability definitions:
Load is input variableMore common in literature
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Aligned to scalability definitions:
Load is input variableMore common in literature

Shows drops in capacity



Function of Load vs. Function of Resources
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Aligned to scalability definitions:
Load is input variableMore common in literature

Allow for normalization [Gunther 2015]

→ exclude resource efficiency

Shows drops in capacity



Resources as a Function of Load
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[Kossmann 2010]

• No binary decision on SLOs but 
instead evaluating the service level 
as a function of load

• Only feasible when auto-scaled in 
the background

➔ Contains evaluation of elasticity



Theodolite Measurement Method

23

load intensity

resources

load intensity

resources
load intensity

resources

load intensity

resources

H1

H3H2



Capacity as Discrete Values
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resources

load intensity

Measure throughput as continuous value?



Capacity as Discrete Values
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resources

load intensity

Measure throughput as continuous value? Alternative 1: [Karakaya 2017], [Nasiri 2019]

• Generate constant load
• Measure throughput

t

load intensity

generated load

observed throughput



Capacity as Discrete Values
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resources

load intensity

t

load intensity

observed throughput

Measure throughput as continuous value? Alternative 1:

• Generate constant load
• Measure throughput



Alternative 1:

• Generate constant load
• Measure throughput

Capacity as Discrete Values
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resources

load intensity

t

load intensity
generated load

observed throughput

What constant 
load?

Measure throughput as continuous value?



Capacity as Discrete Values
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Stream Processing 
System

Load Generator Messaging 
System

Stream Processing 
System

Load Generator Messaging 
System

100 msg./sec

10 000 msg./sec

CPU: 80%

CPU: 5%

Same throughput?

Measure throughput as continuous value? Alternative 1:

• Generate constant load
• Measure throughput



Capacity as Discrete Values
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Stream Processing 
System

Load Generator Messaging 
System

Stream Processing 
System

Load Generator Messaging 
System

100 msg./sec

10 000 msg./sec

CPU: 80%

CPU: 5%

Same throughput?

Measure throughput as continuous value? Alternative 1:

• Generate constant load
• Measure throughput

Probably not



Alternative 2: [Karimov 2017]

• Steadily increase load
• Determine when SLOs are not met 

anymore

Capacity as Discrete Values
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resources

load intensity

t

load intensity

generated load

observed throughput

Measure throughput as continuous value?



Capacity as Discrete Values
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t

load intensity

generated load

observed throughput

t

load intensity

Even with constant load

Measure throughput as continuous value? Alternative 2:

• Steadily increase load
• Determine when SLOs are not met 

anymore

[Henning 2021]



Capacity as Discrete Values
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t

load intensity

generated load

observed throughput

optimized here

Measure throughput as continuous value? Alternative 2:

• Steadily increase load
• Determine when SLOs are not met 

anymore



Conclusions
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Resource demand metric

Load capacity metric

Scalability defined based on:
• Load intensities
• Resources
• SLOs (e.g., Lag Trend)

Scalability as a Function

Remand and capacity as discrete values

Isolated experiments for different load 
and resource combinations

Application



Outlook: Theodolite Benchmarking Tool
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Benchmark

Execution

SUT Load Generator

Load

Resource

SLO

Strategy Duration Repetitions

<<configure>>

1..*

1..*

1..*

1

1

1 1

1 1 1

1

https://github.com/

cau-se/theodolite

Operator

check SLOs

manage
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Theodolite’s Framework Architecture
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Measurement
Data

Offline
Analysis

Experiment Control

Dashboard

Monitoring

Workload 
Generator

Messaging
System

Microservice (SUT)
Implementation of a Use Case

Stream Processing Engine

https://github.com/

cau-se/theodolite



Theodolite’s Benchmarks
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Control Center

aggregatesensor data
windowBy
sliding win.

selectKey results



Example: Commit Interval
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Hierarchical 

Aggregation

Aggregating

Time Attributes

Database 

Storage

Downsampling

Kafka
Streams
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Theodolite’s Scalability Measurement Method

load intensity
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Theodolite’s Scalability Measurement Method

load intensity

resources
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sufficient resources for load?

lag increase over time?

lag = queued messages
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∑
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Identify minimal required 

resources per load intensity
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