
copyright © 2021 Kishor Trivedi

Kishor Trivedi

Department of Electrical and Computer Engineering
Duke University, Durham, NC, USA

ktrivedi@duke.edu

ICPE 2021, Rennes, France
April 19, 2021

Accelerated Life Testing (ALT) Applied
to Software Systems

1

copyright © 2021 Kishor Trivedi

Outline
 Motivation

 Software Aging phenomenon

 Environmental Diversity

 Software Rejuvenation

 Accelerated Life Testing (ALT)

 Applying ALT to Software Systems

2

copyright © 2021 Kishor Trivedi

Too many failures and downtime in practice

 Hardware Fault Tolerance & Fault
management relatively well developed

 System outages more due to software failures

Motivation

copyright © 2021 Kishor Trivedi

Motivation

copyright © 2021 Kishor Trivedi

Failures/downtime due to software bugs

Motivation

Oct. 2012

Sept. 2011

Amazon Webservices – 6 hours (Memory leak)

Amazon EC2 – 2 hours

Google Docs service outage – 1 hour (Memory leak)

5

copyright © 2021 Kishor Trivedi

Failures/downtime due to software bugs

Motivation

Jul. 2017

Jul. 2017

Google Cloud Storage service outage (3 hours and 14
min.) - API low-level software bug

Jul. 2017 - Microsoft Azure service outage (4 hours)
– Load Balancer Software bug

These examples indicate that even the most advanced tech
companies are not offering highly reliable software

6

copyright © 2021 Kishor Trivedi

Fault, Error & Failure

 Failure occurs when the delivered service no longer complies
with the desired output.

 Error is that part of the system state which is liable to lead to
subsequent failure.

 Fault (or bug) is adjudged or hypothesized cause of an error.

Faults (bugs) may cause errors that may lead to failures

Fault Error Failure

Motivation

copyright © 2021 Kishor Trivedi

Software is a big problem

 Fault avoidance through good software engineering practices does not
achieve the goal of low enough fault density for large/complex software
systems

 Impossible to fully test and remove faults to ensure software is fault-free
 Deployed software contain many bugs leading to failures during operation
 Yet there are stringent requirements for failure-free operation

Key Challenge:
Reliable software operation given buggy software

A possible solution: Software Fault Tolerance

Motivation

copyright © 2021 Kishor Trivedi

Traditional Software fault tolerance
 In the 1970’s researchers pondered over the nature of fault

tolerance in software systems

 They thought: it does not make sense to use Identical Copies

of software for fault tolerance

 This is different from hardware fault tolerance – where

redundant components with identical part numbers are used

 If software fails under some workload, its (identical) copy will

also fail on this workload

 So, Software fault tolerance traditionally uses design diversity
9

Motivation

copyright © 2021 Kishor Trivedi

What is Design diversity?
• Design multiple software versions to the same specifications

• Use different algorithms,

• Use different programmers,

• Use different design/programming languages,

• Use different development/testing methods

• This is done to minimize the probability of the same bugs in

these multiple diverse versions, so as to try to achieve mutual

independence from the viewpoint of bugs

10

Motivation

copyright © 2021 Kishor Trivedi

Classical Software Fault Tolerance

 Employing Design diversity

 Recovery block

 N-version programming

11

Motivation

copyright © 2021 Kishor Trivedi

 Design diversity

 Recovery block
 N-version programming

Classical Techniques

Expensive
used in safety-
critical
applications!

Design
diversity

Yet there are
stringent

requirements for
failure-free

operation in other
applications

Need: Affordable Software Fault Tolerance

12

Software Fault Tolerance

Motivation

A possible answer: Environmental Diversity

copyright © 2021 Kishor Trivedi

Outline
 Motivation

 Software Aging phenomena

 Environmental Diversity

 Software Rejuvenation

 Accelerated Life Testing (ALT)

 Applying ALT to Software Systems

13

copyright © 2021 Kishor Trivedi

Contradicting Common notion

 It is commonly believed that unlike hardware,
software does not age

 But since 1995, we know that software does age

Software aging

copyright © 2021 Kishor Trivedi

Software aging

15

• Software aging is the name given to a phenomenon empirically
observed in many software systems.
– as the runtime period of the system or process increases, system slows

down and its failure rate tends to increase.

• In physical (hardware) systems this behavior is well known as the
wear-out phase illustrated by the bathtub curve.

Fa
ilu

re
R

at
e

Software aging

copyright © 2021 Kishor Trivedi

Software aging

16

• Unlike hardware, there is no physical/chemical deterioration in software

• Thus, software “appears” to age or it “behaves as if it is aging”

• What constitutes software aging?

– the deterioration of the application process’s internal state

– it is caused by the cumulative effects of successive error occurrences

– the notion of error accumulation is essential for characterizing the
software aging phenomenon

Software aging

copyright © 2021 Kishor Trivedi

Software aging

OS: Windows, Solaris, Linux, Andriod
Applications: Netscape, Internet Explorer
Databases: Oracle, MySQL
Middleware: JES

 Software applications running for a long period of
time exhibit degradation with respect to usage of
system resources
 Increasing failure rate
 Decreasing performance
 Eventually leading to system failure

 Due to bugs in applications, OS or software libraries

Software aging

copyright © 2021 Kishor Trivedi

Aging-related Bug (ARB): Definition

 Aging-related bug := A fault that
leads to the accumulation of errors
either inside the running application
or in its system-context environment,
resulting in an increased failure rate
and/or degraded performance.

Example:
 A bug causing memory leaks in the application
 Note that the aging phenomenon requires a delay between (first) fault

activation and failure occurrence – large error latency
 Note also that the software appears to age due to such a bug; there is no

physical deterioration

Software aging

copyright © 2021 Kishor Trivedi

Causality Chain for Aging-related (AR) Failures

19

Aging-related Failure is a failure caused by the
accrual of aging effects in a system.

* M. Grottke, R. Matias, and K. Trivedi, “The fundamentals of software aging,” Workshop on Software Aging and Rejuvenation,
WoSAR 2008.

Software aging

copyright © 2021 Kishor Trivedi

Software aging

20

• Software aging often leads to the exhaustion of system resources.

– Memory leaks

– Unreleased locks

– Nonterminated threads

– Shared-memory pool latching

– Storage fragmentation

• Common recovery technique is to restart process, reboot
VM/node, or fail-over to an identical replica (with the same bugs)

Software aging

copyright © 2021 Kishor Trivedi

Have been
Known to help
in dealing with

hardware
transient faults

Do they help in
dealing with failures
caused by software

bugs? Without fixing
those bugs?

If yes, why?

1 2

3

21

Software Fault Tolerance: New Thinking

Env. Diversity

Without fixing bugs

copyright © 2021 Kishor Trivedi

Outline
 Motivation

 Software Aging phenomena

 Environmental Diversity

 Software Rejuvenation

 Accelerated Life Testing (ALT)

 Applying ALT to Software Systems

22

copyright © 2021 Kishor Trivedi

Reactive maintenance
 Applied after a failure occurs

 Process restart, VM reboot, OS reboot, fail-over to an
identical software system, etc.

 The bug that caused the failure, most often not removed
 System is expected to work after restart, reboot, etc.

Environmental
Diversity

copyright © 2021 Kishor Trivedi

 The environment of the application is understood as
 OS resources and other applications running concurrently

 The underlying idea of Environmental diversity
 Restart an application or reboot the node (without fixing the

bug) and it most likely works -- Why?
 These actions counteract the software aging effects

 Frees up OS resources, Removes error accumulation
 Thus, the environment where the application is executed

has been changed and cleaned enough leading to
increased availability of OS resources

 This is fault tolerance via environmental diversity

What is Environmental diversity?

24

Environmental
Diversity

copyright © 2021 Kishor Trivedi

Semi-Markov Availability Model

A Available
G(t)

BFailed
F(t)

State A: the system is up and available
State B: the system is down and undergoing reactive recovery: restart/reboot

Restart/Reboot etc.
Environmental Diversity-based
reactive recovery

MTTRMTTF
MTTF

+
=ssA

MTTF: mean time to aging-related failure – need to obtain from TTF data
MTTR: mean time to recover after an aging-related failure - experimentally

Environmental
Diversity

Steady state availability =

copyright © 2021 Kishor Trivedi

Implications of aging

 For hardware components or systems that are
subject to aging, it is common to carry out preventive
maintenance to improve its reliability/availability

 Since software is now known to age as well,
preventive maintenance of a software system can be
used to improve its reliability/availability

 Preventive maintenance in software systems has an
exciting name: software rejuvenation

Environmental
Diversity

copyright © 2021 Kishor Trivedi

Software Fault Tolerance: Classical Techniques

 Design diversity
 Recovery block
 N-version programming
 ……

Expensive
not used much
in practice!

Design
diversity

Yet there are
stringent

requirements for
failure-free
operation

Challenge: Affordable Software Fault Tolerance
A possible answer: preventive maintenance based

on environmental diversity
known as software rejuvenation

Environmental
Diversity

copyright © 2021 Kishor Trivedi

Outline
 Motivation

 Software Aging phenomena

 Environmental Diversity

 Software Rejuvenation

 Accelerated Life Testing (ALT)

 Applying ALT to Software Systems

28

copyright © 2021 Kishor Trivedi

Software Rejuvenation
 Proactive technique to counteract software aging

 To prevent or postpone failures and slow down
performance degradation

 Periodic, proactive rollback to a clean state
 Potential actions

 Garbage collection
 Defragmentation
 Flushing kernel/file tables
 Application or service restarts
 VM or VMM or OS reboot

 Rejuvenation of the environment, not of software
 Due to overhead of performing rejuvenation

determining optimal schedule is important Source: IBM

Telco, space systems, defense systems, web
services, cloud services, …

copyright © 2021 Kishor Trivedi

Semi-Markov availability model with Software Rejuvenation

A

Available

C Rejuvenation
Det(δ)G(t)

H(t)
BFailed

F(t)

Distribution of TTF Needed to determine optimal value of rejuvenation trigger interval

state A: the system is up and available
state C: the state in which software rejuvenation is being carried out
state B: the system is down and under reactive recovery

Rejuvenation triggerReactive recovery

Proactive recovery: Rejuvenation

copyright © 2021 Kishor Trivedi

 Collect (past) times to failure (TTF) data
 Fit the data to a known (IFR) distribution such

as Weibull or Hypo-exponential
 Find optimal times to trigger rejuvenation

 Need to solve a fixed-point equation
 These equations are known – several papers

and books provide the equations [See Trivedi
& Bobbio, 2017 Cambridge University Press --
greenbook]

Optimal Rejuvenation Schedule

copyright © 2021 Kishor Trivedi

A Difficulty

32

• Software aging failures are very difficult to observe experimentally

– because the accumulation of aging effects usually are random and
require long runtimes

• Thus, collecting data for statistically significant predictions of
software aging is typically a long-running task and may be
unaffordable in many circumstances (ex. highly reliable systems)

• This is an important problem that prevents many experimental and
analytical studies of Software Aging & Rejuvenation from using
representative parameter values

• Potential solution: ALT (Accelerated Life-Testing)

copyright © 2021 Kishor Trivedi

Outline
 Motivation

 Software Aging phenomena

 Environmental Diversity

 Software Rejuvenation

 Accelerated Life Testing (ALT)

 Applying ALT to Software Systems

33

copyright © 2021 Kishor Trivedi

Our Approach

34

• Accelerate the occurrences of Aging-related failures through

– controlled experiments using the quantitative accelerated life test
method (QALT)

• Since QALT was developed for physical/chemical systems

– we need to adapt it to software systems suffering from aging

copyright © 2021 Kishor Trivedi

The QALT Method

35

• Quantitative accelerated life tests are used in several
engineering fields to significantly reduce the time needed for testing

• QALT is designed to quantify the life characteristics (e.g., MTTF and
Distr. of TTF) of a SUT by applying controlled stresses

• Since the SUT is tested in accelerated mode, the obtained results must
be properly adjusted

– the lifetime data obtained under stress is used to estimate the
lifetime distribution of the SUT for its normal use condition

We use Inverse Power Law (IPL) for this purpose

copyright © 2021 Kishor Trivedi

The QALT Method

36

Lifetime densities & Stress levels

Estressestress levels

L
ife

 f(
t)

copyright © 2021 Kishor Trivedi

The QALT Method

37

• Main components of Accelerated Life Test Plan are:

1) Accelerating stress variable and their levels of utilization (load)

2) Stress loading scheme

3) Life-stress relationship model

4) Sample size (n)

5) Allocation proportion (∝)

copyright © 2021 Kishor Trivedi

Acceleration of Aging Effects

38

The key idea is to accelerate the activation of Aging-
related bugs/faults (ARBs or AR faults) by controlling
the workload.

copyright © 2021 Kishor Trivedi

System Under Test (SUT)

39

• The Apache web server (httpd), version 2.0.48, is
known to suffer from software aging
– its main cause of aging is memory leak

• We verified that HTTP requests addressing dynamic
pages cause memory leak in this httpd version
– Experiments we conducted indicated that the “page size” of

dynamic requests intensifies the aging effects.

Example 1

copyright © 2021 Kishor Trivedi

Test Bed

40

Example 1

copyright © 2021 Kishor Trivedi

QALT Planning

41

• Main parameters
– Stress variable (Aging Factor)

• HTTP requests addressing dynamic pages

– Stress Levels
• three page sizes

– Sample size (n)
• calculated based on a pilot sample of failure times

– Tests allocation proportion (∝)
• traditional plan (the same sample size for each stress level)

• ∝ = n ÷ 3

Example 1

copyright © 2021 Kishor Trivedi

QALT Planning

42

Example 1

∝

copyright © 2021 Kishor Trivedi

QALT Execution

43

• To better control the exposure of httpd to aging
effects, we test only one httpd process.

• The SUT is considered failed when the size (RSS) of
the httpd process crosses 100 megabytes.

• The rationale is that in a web server system with 3-
GB of RAM running 200 httpd processes
– if at least 30 processes (15%) grow to around 100

megabytes we have saturation of the server memory.

Example 1

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

44

• We measure the size (RSS) of the httpd processes
after every 100 requests.

• We consider the time to failure not in the units of
wall- clock time but
– the number of bunches of 100 requests processed before the

httpd size crosses the specified threshold.

• The wall-clock time may be estimated from the total
number of requests until failure and the average
request rate.

Example 1

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

45

Example 1

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

46

• samples of times to failure (TTF), were fitted to several
probability distributions.

• The criteria used to build the best-fit ranking were the
log-likelihood function (Lk), and the Pearson's linear
correlation coefficient (ρ),
– whose parameter estimation methods were MLE, and LSE,

respectively.

• The Weibull probability distribution showed the best fit for
the three accelerated lifetime data sets

Example 1

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

47

Example 1

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

48

Example 1

CI (90%) Stress Parameter ML
Estimate Lower Upper

β1 24.0889 14.3941 40.3134 S1
η1 93.3175 90.8149 95.8891
β 2 25.0000 15.2671 40.9377 S2
η2 38.2697 37.2791 39.2865
β 3 22.0825 13.3316 36.5775 S3
η3 22.8595 22.1925 23.5465

Estimated Weibull Parameters

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

49

• The Weibull distribution showed the best fit for the sample of
failure times

• We use it in conjunction with the IPL model to create our life-
stress relationship model.

1
v ⋅ swη(s) =η

−

 η η ef (t)= β t
β −1 t β

f (t,s) = βvsw(vswt)β−1e−(vswt)β

Example 1

2-parameter Weibull (pdf) IPL

IPL-Lognormal (pdf)

η, β are respectively the scale and shape parameters.
s is the stress level value.
𝑣𝑣 is one of the IPL model parameters to be determined, (v > 0).
w is another model parameter to be determined.

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

50

• The MTTF equation can be directly derived from the IPL-
Weibull model.

• We use this equation to estimate the mean time to failure of
the SUT at a specific use rate.

Example 1

Estimated IPL-Weibull Parameters

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠) =
1

𝑣𝑣𝑠𝑠𝑤𝑤 � Γ
1
𝛽𝛽

+ 1

Estimated IPL-Weibull Parameters

Parameter ML Estimate
CI (90%)

Lower Upper
v 5.7869E-8 3.7257E-8 8.9885E-8
w 2.0340 1.9646 2.1034
β 18.9434 13.5270 26.5286

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

51

• Using the estimated parameters for the IPL-Weibull model, we
calculate the mean life of the SUT for its use condition.

200 1000
10

500

stress = page size

Li
fe

100
Estimated MTTF= 365.48

(at use condition)

IPL-Weibull model fitted to the accelerated lifetime dataset

Example 1

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

52

• In order to evaluate the accuracy of the estimates, we ran an experiment
using the page size equals to 200 kB

• This setup refers to the SUT operating in its use condition (w/o
accelerating stress)

Example 1

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

53

• We evaluate the proposed method with respect to the reduction of
experimentation time.

• First, we calculate the total time spent to execute all tests (replications)
for all stress levels:

where
te is the total experiment time,
m is the number of stress levels in the experimental plan,
rj is the number of test replications executed in the jth level of stress,
TTFij is the ith observed failure time in the jth level of stress.

Example 1

𝑡𝑡𝑡𝑡 = �
𝑗𝑗=1

𝑚𝑚

�
𝑖𝑖=1

𝑟𝑟𝑗𝑗

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗

copyright © 2021 Kishor Trivedi

QALT Execution (cont’d)

54

• Based on the sample of failure times from the SUT, the value of te is
105,600 requests.

• The observed mean time to aging-related failures for the SUT at
use condition is 343.57 (or 34,357 requests).
– considering 21 replications, as used in our approach, we have a total

experimentation time of 721,497 requests.

• In summary:
– 21 tests (w/o acceleration) = 721,497 requests

– 21 tests (w/ acceleration) = 105,600 requests

• A reduction of the experimental time by a factor close to 7.

Example 1

copyright © 2021 Kishor Trivedi

Two Other Examples of using
ALT for Software Systems

 Software rejuvenation scheduling using accelerated
life testing, J. Zhao, Y. Jin, K. Trivedi, R. Matias Jr., and
Y. Wang, ACM Journal on Emerging Technologies in
Computing Systems, 2014.

 Stress Testing With Influencing Factors to
Accelerate Data Race Software Failures. Qiu, Zheng,
Trivedi, et al. IEEE Transactions on Reliability, 2019.

55

copyright © 2021 Kishor Trivedi

Conclusion

56

• Research in software aging has been limited to measure aging
effects without observing failures
– mainly because the long period of time required to observe aging-

related failures

• We have demonstrated the feasibility of applying QALT to reduce
the time to failures in systems suffering from software aging
– we use the concept of “aging factors” as “stress variables”, which

enables the use of QALT to software systems

Conclusion

copyright © 2021 Kishor Trivedi

Selected References
 Handbook on Software Aging and rejuvenation, T. Dohi, K. Trivedi & A.

Avritzer (eds.), World scientific, 2020
 Reliability and Availability: Modeling, Analysis, Applications, K. Trivedi & A.

Bobbio, Cambridge University Press, 2017
 Accelerated testing: statistical method, test plans, and data analysis, B. N.

Nelson, New Jersey: Wiley, 2004.
 An Experimental Study on Software Aging and Rejuvenation in Web Servers. R.

Matias, P. J. Freitas Filho, COMPSAC, 2006.
 Using Accelerated Life Tests to Estimate Time to Software Aging Failure, R.

Matias, K. Trivedi, P. Maciel , ISSRE, 2010.
 Accelerated Degradation Tests Applied to Software Aging Experiments, R.

Matias, K. Trivedi, P. Filho and P. Barbetta, IEEE Trans. on Reliability, 2010.
 Software rejuvenation scheduling using accelerated life testing, J. Zhao, Y.

Jin, K. Trivedi, R. Matias Jr., and Y. Wang, ACM Journal on Emerging
Technologies in Computing Systems, 2014.

 Understanding the impacts of influencing factors on time to a datarace software
failures, K. Qiu, Z. Zheng, K.S. Trivedi, B. Yin, ISSRE 2017

 Stress Testing With Influencing Factors to Accelerate Data Race Software
Failures. Qiu, Zheng, Trivedi, et al. IEEE Transactions on Reliability, 2019.

57

	Slide Number 1
	Outline
	Too many failures and downtime in practice
	Slide Number 4
	Failures/downtime due to software bugs
	Failures/downtime due to software bugs
	Fault, Error & Failure
	Software is a big problem
	Traditional Software fault tolerance
	 What is Design diversity?
	Classical Software Fault Tolerance
	Software Fault Tolerance
	Outline
	Contradicting Common notion
	Software aging
	Software aging
	Software aging
	Aging-related Bug (ARB): Definition
	Causality Chain for Aging-related (AR) Failures
	Software aging
	Software Fault Tolerance: New Thinking
	Outline
	Reactive maintenance
	What is Environmental diversity?
	 		 Semi-Markov Availability Model
	Implications of aging
	Software Fault Tolerance: Classical Techniques
	Outline
	Software Rejuvenation
	 Semi-Markov availability model with Software Rejuvenation
	Optimal Rejuvenation Schedule
	A Difficulty
	Outline
	Our Approach
	The QALT Method
	The QALT Method
	The QALT Method
	Acceleration of Aging Effects
	System Under Test	(SUT)
	Test Bed
	QALT Planning
	QALT Planning
	QALT Execution
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	QALT Execution (cont’d)
	Two Other Examples of using �ALT for Software Systems
	Conclusion
	 Selected References

