

PIERES: A Playground for Network Interrupt Experiments on Real-Time Embedded Systems in the IoT 19th April 2021

Franz Bender

Jonas Brune

Nick Keutel

Ilja Behnke

Lauritz Thamsen

Outline

- Motivation
- Approach
- Experiments
- Conclusion

Notivation

Problem Setting Real-Time Systems in the IOT

Current Situation

More and more real-time system get connected to the IOT What happens when a lot of network packets arrive?

Handling Network Packets

Problem Setting Real-Time Systems in the IOT

Current Situation

More and more real-time system get connected to the IOT What happens when a lot of network packets arrive?

Resulting Questions

- → Do network interrupts pose a threat to the real-timeness?
- → How can we conduct research on this?

Problem Setting Real-Time Systems in the IOT

Current Situation

More and more real-time system get connected to the IOT What happens when a lot of network packets arrive?

Resulting Questions

- → Do network interrupts pose a threat to the real-timeness?
- → How can we conduct research on this?

First Question: It depends, see [1]

[1] Behnke, Ilja & Pirl, Lukas & Thamsen, Lauritz & Danicki, Robert & Polze, Andreas & Kao, Odej. (2021). Interrupting Real-Time IoT Tasks: How Bad Can It Be to Connect Your Critical Embedded System to the Internet?

Our Goal A playground for testing the effects of network interrupts on some given code

Source code (to be tested)

Analysis

What's the impact of interrupts on runtime?

Approach

Operation of the Playground General procedure of a user operating the playground

Network Interface Controller (NIC) Implementations Simple NIC model

- - l:packet length
 - d_1 :
- d_c :

 $d(l) = d_l \cdot l + d_c$

d(l): total duration per packet

length dependent delay

length independent delay

NC mplementations **NIC** implementations with interrupt moderation

Interrupt moderation allows for the CPU to decide whether it wants to be informed about new packets immediately or later

The playground supports NICs to be defined with

- a counter mode
- a timer mode
- or a combination out of the box (mixed mode)

NC mplementations **NIC** implementations with counter mode

A NIC with the counter mode does not trigger an interrupt for every received packet, but triggers one after a specified number of packets

The packets are stored in a buffer and after a specified count a single interrupt is invoked for them all

Counter and buffer are reset after an interrupt has been triggered

NIC Implementations NIC implementations with timer mode

a packet arrives

It gets written to memory No interrupt is invoked A packet delay timer is set

a packet arrives

It gets written to memory Still no interrupt is invoked The timer gets reset

interrupt gets fired

The timer has expired because no other packet was received since the last timer reset so the interrupt gets fired

Combining timer and counter mode ensures that an interrupt gets triggered eventually

Network Traffic Scenarios as Load Multiple implemented load generators offer flexibility

Definition of load scenario: the arrival of packets with corresponding time stamps over some observed time

The playground offers:

random loads

user defined or recorded loads

Network Traffic Scenarios as Load **Random loads**

Poisson distribution is used to model random loads

then the inter-arrival time d_i is exponentially distributed

$$p_i \sim P(\lambda)$$
$$d_i = t_{i+1} - t_i$$
$$d_i \sim E(\lambda)$$

distribution [2]

$$\hat{d}_i = F^{-1}(u_i) = -\frac{1}{\lambda} \ln(1 - u_i) = -\frac{1}{\lambda} \ln(u_i) \qquad u_i \sim U(0, 1)$$

[2] L. Devroye, Non-Uniform Random Variate Generation. New York, NY: Springer New York, 1986.

- Assuming the number of incoming packets per interval p_i is Poisson distributed

Inverse transform sampling enables the sampling of packet delays from uniform

Network Traffic Scenarios as Load User defined loads

The playground allows for recorded network scenarios to be replayed

The network scenarios have to be provided as Packet CAPtures

Custom Reproducible Loads

Prototype Implementation Implementation of the playground on the ESP32

Test Subject

Experiments

Validation Experiment I

Expectation: Longer packet delay timer results in shorter execution time and less interrupts

Validation Experiment **Expectation: Counter mode scales linearly with load**

Counter threshold

Practical Example I What causes the interrupts?

Practical Example II Using prerecorded PCAP: Spotify vs. Zoom

[Line] Packet Delay Timer in s / [Fill] Packet Inter-Arrival Time in s

Conclusion

Our playground

- interrupt simulation in real-time scenarios
- settings as well as logging
- was validated through a series of tests

enables researchers to conduct experiments in the context of network

offers multiple load generators including random and custom prerecorded

Future Work

- Add more (complex) NIC models and random load sources
- Create a repository of PCAP files