
Concurrent User Modeling
An Alternative Approach to Classic Queuing Theory

Xiaosong Lou

Concurrent Users Concurrent User is one of the key performance

metrics in a system. Many performance issues that

can only be exposed under load are related to the
increased number of concurrent users.

In the context of load test, we often hear phrases

such as “test the system under x concurrent users”.

This is a common misunderstanding of the term.

In most cases, Concurrent User is a Random

Variable.

We propose an analytical alternative to the classic
queuing theory for estimating Concurrent User.

This model helps us determine whether the

simulated workload is a proper representation of
the expected production scenario.

Performance Issues
Triggered by
Concurrent Users

❖ Queuing
➢ Queuing occurs when number of

concurrent requests in the system exceeds
total available resources to serve them. It
directly affects service time.

❖ Resources
➢ Concurrent requests in the system

requires more caches, buffers, file
descriptors, thread pools and other
temporary resources.

❖ Deadlocks and Race Condition
➢ As the number of parallel resources access

increases, the chances of rare and

unforeseen state changes increases, and
cause problems sometimes hard to
reproduce.

Problematic
Workload
Simulation

Many people setup the simulation with throughput

as a target, while concurrent user states are

completely ignored.

Many tools are programed to default to the easiest
way of achieving the targeted throughput, while

ignoring the distribution of concurrent users.

Another common misconception is “stress test”. In
many cases, people would increase the throughput

by cutting down or completely eliminating think

time in a workflow, thereby achieving the desired
“stress level”. We prove that such an approach is

not sending the proper workload to the system.

Classic Queuing
Model

In classic queueing models, the Concurrent User is

represented by state probabilities in Markov Chain.

There are many queuing models based on arrival

and departure processes, number of servers, limits

of queue depth, scheduling strategy etc.

The analytical solutions for the state probabilities
are often long and seemingly prohibitive formulas.

We believe this has in part contributed to the fact

that many test engineers don’t use them.

Most of these models require that arrivals are

independent.

Modeling
Concurrent User
from the Server

Alternatively, we model the concurrent user from

observing server states.

Instead of assume all arrivals are independent and

identically distributed, we only require that all
clients are independent. Each client could have

multiple requests that are dependent of each other.

When user interaction (think time) >> transaction
processing, this model approximates classic

M/M/C/K model.

When think time approaches zero, this model
approximates non-independent arrivals

Binomial
Approximation

❖ Individual client arrival xi follows Bernoulli

distribution

Pr 𝑥! = 1
= Pr 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑓𝑟𝑜𝑚 𝑐𝑙𝑖𝑒𝑛𝑡 𝑖

= "
#

❖ Number of Concurrent Users N follows

Binomial Distribution

Pr 𝑁 = 𝑖 = $
!

"
#

!
1 − "

#

$%!

Converges to
Normal Distribution
when N is
sufficiently large

According to Central Limit Theorem, when k is

sufficiently large, N converges in probability to

normal distribution

Pr 𝑁 = 𝑖 ≈ 9
!%&

!
1

𝜎 2𝜋
𝑒%

"%' !

()! 𝑑𝑡

where 𝜇 = $"
#

and 𝜎 = $"
#
1 − "

#

Actual User
Scenario

● 1000 clients

● Average response time is 188ms

● Average think time 15 seconds

Concurrent user is a random variable. We record

the actual number of concurrent users in the
system over the duration of our test.

Compare modeling
result with actual
measurement

Our model suggests that the number of

concurrent users follow normal distribution with

average = 12.38 and standard deviation = 3.497

After two layers of approximation, our calculation

looks reasonably close to the actual measured
distribution of Concurrent Users in the system.

Stress test done
wrong

One common approach for “stress test”, is to

reduce or remove think time in simulation so that

a single load generator thread can send more
requests to the server.

This is a common mistake. Because by reducing
think time, the resulted distribution actual

concurrent users vary drastically compared to the

system under actual stress.

In this case, by shrinking think time to 120ms, we

only need 20 threads to get the same throughput.
However, the resulted distribution of concurrent

users is much more concentrated around the

mean value, and much less of high-concurrency
stress is being tested.

Classic Poisson
Arrival

In our actual load scenario, the 1000 clients are

independent. Furthermore, because of the large

think time between requests within a single client
compared to response time, this workload is a

perfect example for Poisson arrival process.

Using a load generator that can simulate Poisson

arrivals, we see that not only the throughput is

properly simulated, concurrent users are also very
accurately simulated.

When this model
doesn’t work

In previous example, we show that the proposed

model is accurate in describing the distribution of

concurrent users when each clients are
independent of each other.

When the clients are dependent of each other,
this model doesn’t work.

There is ”Constant Throughput Timer” in Jmeter.
Under this setting, with 200 threads, we achieve

the same throughput. However concurrent user

distribution doesn’t fit the model at all.

Possible explanation: All 200 users are in sync and

requests come in waves.

Don’t be fooled by
load generators

Jmeter is probably the most popular free load

generator. However, most of the settings in

Jmeter fails to ensure a proper simulation of
concurrent users.

Jmeter actually has a “Poisson Random Timer”,
but it doesn’t simulate Poisson process. Instead, it

sets think time to follow Poisson distribution. This

approach makes the resulted simulate very
different from the expected concurrent user

distribution.

The “Precise Throughput Timer” in Jmeter

simulates Poisson process, if there are suffice

threads so that among these threads, the requests
can be considered “independent and identically

distributed”

Summary ❖ We use Normal Distribution to model
Concurrent User
➢ It is a more familiar distribution
➢ Less restrictive than classic queuing model

❖ We show that our model is equivalent to

queuing model when applicable
➢ When requests are independent and

identically distributed, both Poisson model

and our proposed Normal distribution are
very close to the actual measurements

❖ There are many ways of improper
simulations
➢ Not setting think time in a close-network

simulation is one of the most common
mistake

➢ Make sure you understand what the tool is
doing. Don’t be fooled by the name of the
settings.

